韋達定理公式
來源:易賢網 閱讀:2171 次 日期:2016-01-30 13:26:36
溫馨提示:易賢網小編為您整理了“韋達定理公式”,方便廣大網友查閱!

韋達定理公式:

一元二次方程ax^2+bx+c (a不為0)中

設兩個根為x和y

則x+y=-b/a

xy=c/a

韋達定理在更高次方程中也是可以使用的。一般的,對一個n次方程∑AiX^i=0

它的根記作X1,X2…,Xn

我們有

∑Xi=(-1)^1*A(n-1)/A(n)

∑XiXj=(-1)^2*A(n-2)/A(n)

∏Xi=(-1)^n*A(0)/A(n)

其中∑是求和,∏是求積。

如果一元二次方程

在復數集中的根是,那么

法國數學家韋達最早發(fā)現代數方程的根與系數之間有這種關系,因此,人們把這個關系稱為韋達定理。歷史是有趣的,韋達的16世紀就得出這個定理,證明這個定理要依靠代數基本定理,而代數基本定理卻是在1799年才由高斯作出第一個實質性的論性。

由代數基本定理可推得:任何一元 n 次方程

在復數集中必有根。因此,該方程的左端可以在復數范圍內分解成一次因式的乘積:

其中是該方程的個根。兩端比較系數即得韋達定理。

韋達定理在方程論中有著廣泛的應用。

定理的證明

設<math>x_1</math>,<math>x_2</math>是一元二次方程<math>ax^2+bx+c=0</math>的兩個解,且不妨令<math>x_1 \ge x_2</math>。根據求根公式,有

<math>x_1=\frac{-b + \sqrt {b^2-4ac}}</math>,<math>x_2=\frac{-b - \sqrt {b^2-4ac}}</math>

所以

<math>x_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac</math>,

<math>x_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac</math>

更多信息請查看高中
易賢網手機網站地址:韋達定理公式
關于我們 | 聯(lián)系我們 | 人才招聘 | 網站聲明 | 網站幫助 | 非正式的簡要咨詢 | 簡要咨詢須知 | 新媒體/短視頻平臺 | 手機站點

版權所有:易賢網